Introduction to Linear Dynamical Systems

Incarcat la data: 19 Aprilie 2011

Autor: Admin

By Stephen Boyd - Stanford University
Licence: Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Course Description:
Introduction to applied linear algebra and linear dynamical systems, with applications to circuits, signal processing, communications, and control systems.Topics include: Least-squares aproximations of over-determined equations and least-norm solutions of underdetermined equations. Symmetric matrices, matrix norm and singular value decomposition. Eigenvalues, left and right eigenvectors, and dynamical interpretation. Matrix exponential, stability, and asymptotic behavior. Multi-input multi-output systems, impulse and step matrices; convolution and transfer matrix descriptions. Control, reachability, state transfer, and least-norm inputs. Observability and least-squares state estimation. Prerequisites: Exposure to linear algebra and matrices. You should have seen the following topics: matrices and vectors, (introductory) linear algebra; differential equations, Laplace transform, transfer functions. Exposure to topics such as control systems, circuits, signals and systems, or dynamics is not required, but can increase your appreciation.
Lectures:
Lecture 1 - Overview Of Linear Dynamical Systems

Overview Of Linear Dynamical Systems, Why Study Linear Dynamical Systems?, Examples Of Linear Dynamical Systems, Estimation/Filtering Example, Linear Functions And Examples

 
Lecture 2 - Linear Functions (Continued)

Linear Functions (Continued), Interpretations Of Y=Ax, Linear Elastic Structure, Example, Total Force/Torque On Rigid Body Example, Linear Static Circuit Example, Illumination With Multiple Lamps Example, Cost Of Production Example, Network Traffic And Flow Example, Linearization And First Order Approximation Of Functions

 
Lecture 3 - Linearization (Continued)

Linearization (Continued), Navigation By Range Measurement, Broad Categories Of Applications, Matrix Multiplication As Mixture Of Columns, Block Diagram Representation, Linear Algebra Review, Basis And Dimension, Nullspace Of A Matrix

 
Lecture 4 - Nullspace Of A Matrix (Continued)

Nullspace Of A Matrix(Continued), Range Of A Matrix, Inverse, Rank Of A Matrix, Conservation Of Dimension, 'Coding' Interpretation Of Rank, Application: Fast Matrix-Vector Multiplication, Change Of Coordinates, (Euclidian) Norm, Inner Product, Orthonormal Set Of Vectors

 
Lecture 5 - Orthonormal Set Of Vectors

Orthonormal Set Of Vectors, Geometric Interpretation, Gram-Schmidt Procedure, General Gram-Schmidt Procedure, Applications Of Gram-Schmidt Procedure, 'Full' QR Factorization, Orthogonal Decomposition Induced By A, Least-Squares

 
Lecture 6 - Least-Squares

Least-Squares, Geometric Interpretation, Least-Squares (Approximate) Solution, Projection On R(A), Least-Squares Via QR Factorization, Least-Squares Estimation, Blue Property, Navigation From Range Measurements, Least-Squares Data Fitting

 
Lecture 7 - Least-Squares Polynomial Fitting

Least-Squares Polynomial Fitting, Norm Of Optimal Residual Versus P, Least-Squares System Identification, Model Order Selection, Cross-Validation, Recursive Least-Squares, Multi-Objective Least-Squares

 
Lecture 8 - Multi-Objective Least-Squares

Multi-Objective Least-Squares, Weighted-Sum Objective, Minimizing Weighted-Sum Objective, Regularized Least-Squares, Laplacian Regularization, Nonlinear Least-Squares (NLLS), Gauss-Newton Method, Gauss-Newton Example, Least-Norm Solutions Of Undetermined Equations

 
Lecture 9 - Least-Norm Solution

Least-Norm Solution, Least-Norm Solution Via QR Factorization, Derivation Via Langrange Multipliers, Example: Transferring Mass Unit Distance, Relation To Regularized Least-Squares, General Norm Minimization With Equality Constraints, Autonomous Linear Dynamical Systems, Block Diagram

 
Lecture 10 - Examples Of Autonomous Linear Dynamical Systems

Examples Of Autonomous Linear Dynamical Systems, Finite-State Discrete-Time Markov Chain, Numerical Integration Of Continuous System, High Order Linear Dynamical Systems, Mechanical Systems, Linearization Near Equilibrium Point, Linearization Along Trajectory

 
Lecture 11 - Solution Via Laplace Transform And Matrix Exponential

Solution Via Laplace Transform And Matrix Exponential, Laplace Transform Solution Of X_^ = Ax, Harmonic Oscillator Example, Double Integrator Example, Characteristic Polynomial, Eigenvalues Of A And Poles Of Resolvent, Matrix Exponential, Time Transfer Property

 
Lecture 12 - Time Transfer Property

Time Transfer Property, Piecewise Constant System, Qualitative Behavior Of X(T), Stability, Eigenvectors And Diagonalization, Scaling Interpretation, Dynamic Interpretation, Invariant Sets, Summary, Markov Chain (Example)

 
Lecture 13 - Markov Chain (Example)

Markov Chain (Example), Diagonalization, Distinct Eigenvalues, Digaonalization And Left Eigenvectors, Modal Form, Diagonalization Examples, Stability Of Discrete-Time Systems, Jordan Canonical Form, Generalized Eigenvectors

 
Lecture 14 - Jordan Canonical Form

Jordan Canonical Form, Generalized Modes, Cayley-Hamilton Theorem, Proof Of C-H Theorem, Linear Dynamical Systems With Inputs & Outputs, Block Diagram, Transfer Matrix, Impulse Matrix, Step Matrix

 
Lecture 15 - DC Or Static Gain Matrix

DC Or Static Gain Matrix, Discretization With Piecewise Constant Inputs, Causality, Idea Of State, Change Of Coordinates, Z-Transform, Symmetric Matrices, Quadratic Forms, Matrix Nom, And SVD, Eigenvalues Of Symmetric Matrices, Interpretations Of Eigenvalues Of Symmetric Matrices, Example: RC Circuit

 
Lecture 16 - RC Circuit (Example)

RC Circuit (Example), Quadratic Forms, Examples Of Quadratic Form, Inequalities For Quadratic Forms, Positive Semidefinite And Positive Definite Matrices, Matrix Inequalities, Ellipsoids, Gain Of A Matrix In A Direction, Matrix Norm, Properties Of Matrix Norm

 
Lecture 17 - Gain Of A Matrix In A Direction

Gain Of A Matrix In A Direction, Singular Value Decomposition, Interpretations, Singular Value Decomposition (SVD) Applications, General Pseudo-Inverse, Pseudo-Inverse Via Regularization, Full SVD, Image Of Unit Ball Under Linear Transformation, SVD In Estimation/Inversion, Sensitivity Of Linear Equations To Data Error

 
Lecture 18 - Sensitivity Of Linear Equations To Data Error

Sensitivity Of Linear Equations To Data Error, Low Rank Approximations, Distance To Singularity, Application: Model Simplification, Controllability And State Transfer, State Transfer, Reachability, Reachability For Discrete-Time LDS

 
Lecture 19 - Reachability

Reachability, Controllable System, Lest-Norm Input For Reachability, Minimum Energy Over Infinite Horizon, Continuous-Time Reachability, Impulsive Inputs, Least-Norm Input For Reachability

 
Lecture 20 - Continuous-Time Reachability

Continuous-Time Reachability, General State Transfer, Observability And State Estimation, State Estimation Set Up, State Estimation Problem, Observability Matrix, Least-Squares Observers, Some Parting Thoughts..., Linear Algebra, Levels Of Understanding, What's Next

 

Source: http://academicearth.org/courses/introduction-to-linear-dynamical-systems

Textul de mai sus reprezinta un extras din "Introduction to Linear Dynamical Systems". Pentru versiunea completa a documentului apasa butonul Download si descarca fisierul pe calculatorul tau. Prin descarcarea prezentei lucrari stiintifice, orice utilizator al site-ului www.studentie.ro declara si garanteaza ca este de acord cu utilizarile permise ale acesteia, in conformitate cu prevederile legale ablicabile in domeniul proprietatii intelectuale si in domeniul educatiei din legislatia in vigoare.

In cazul in care intampini probleme la descarcarea fisierului sau documentul nu este nici pe departe ceea ce se doreste a fi te rugam sa ne anunti. Raporteaza o eroare

Important!

Referatele si lucrarile oferite de Studentie.ro au scop educativ si orientativ pentru cercetare academica.

Iti recomandam ca referatele pe care le downloadezi de pe site sa le utilizezi doar ca sursa de inspiratie sau ca resurse educationale pentru conceperea unui referat nou, propriu si original.

Jacheta usoara verde oliv inchis Jacheta usoara verde oliv inchis Descriere produs:Tip: jachetaCuloare: verde oliv inchisMaterial: usorDetalii: margini...
Jacheta usoara violet inchis Jacheta usoara violet inchis Descriere produs:Tip: jachetaCuloare: violet inchisMaterial: usorDetalii: margini...
Camasa alba in dungi Camasa alba in dungi Descriere produs:- camasa alba cu dungi albastre- imprimeu text pe partea din spate- guler...